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Abstract
An embedding of chaotic data into a suitable phase space creates a
diffeomorphism of the original attractor with the reconstructed attractor.
Although diffeomorphic, the original and reconstructed attractors may not be
topologically equivalent. In a previous work, we showed how the original and
reconstructed attractors can differ when the original is three-dimensional and of
genus-one type. In the present work, we extend this result to three-dimensional
attractors of arbitrary genus. This result describes symmetries exhibited by the
Lorenz attractor and its reconstructions.

PACS number: 05.45.−a

1. Introduction

Mappings of scalar and vector time series into suitable phase spaces are regularly used to
visualize processes that generate experimental data [1, 2]. When the mapping is an embedding,
a diffeomorphism exists between the original (experimental) attractor and the reconstructed
attractor. It is known from numerous examples that a single time series can be embedded in
different ways, giving rise to reconstructed attractors that ‘look different’. We illustrate this
idea in figure 1, which shows two representations of the Lorenz attractor [3]. Under the usual
vector embedding (x(t), y(t), z(t)) → R

3, the attractor exhibits rotation symmetry about the
z-axis. The branched manifold [4–7] describing this representation of the Lorenz attractor is
shown in figure 1(a). It has a two-fold rotation symmetry about an axis through the origin
and perpendicular to the plane. On the other hand, under the scalar differential embedding
(x(t), ẋ(t), ẍ(t)) → R

3 the reconstructed attractor exhibits inversion symmetry through the
origin [6–9]. The branched manifold describing this reconstruction of the Lorenz attractor is
shown in figure 1(b), where inversion symmetry is clearly exhibited. These two representations
of the Lorenz attractor look different: in fact they are topologically inequivalent in the sense
that there is no smooth deformation of phase space that transforms one into the other. There
is no family of smooth nonsingular transformations in R

3 that deforms an object with rotation
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Figure 1. Branched manifolds describing two representations of the Lorenz attractor: (a) with
rotation symmetry; (b) with inversion symmetry. The two attractors are related by a diffeomorphism
restricted to the attracting set but they are not topologically equivalent.

symmetry to the one with inversion symmetry. The two representations of this attractor are
diffeomorphic but topologically inequivalent.

The problem can be presented more precisely as follows. An experimental attractor can be
reconstructed (recreated, represented) by an embedding. An embedding is a diffeomorphism
between the original and the reconstructed attractor. Two different embeddings create
topologically equivalent attractors if there is an isotopy that takes one diffeomorphism into
the other [10]: that is, the two diffeomorphisms are both members of a smooth one-parameter
family of diffeomorphisms. The central point is that not every pair of diffeomorphisms can be
joined by a smooth isotopy [10]. When two diffeomorphisms are not isotopic, the attractors
they recreate are not topologically equivalent [6, 7, 11]. It is known that diffeomorphic but
topologically inequivalent embeddings can result from time delay embeddings with different
delays [11].

This raises an important question. How much of what we learn by studying a reconstructed
attractor depends on the embedding and how much is independent of the embedding? The
properties that are independent of the embedding characterize the original attractor.

Geometric properties, such as the spectrum of fractal dimensions, are in principle
diffeomorphism independent [12] (but see [13]). Dynamical properties, such as the spectrum
of Lyapunov exponents, are also diffeomorphism independent (but see [14, 15]). As a result,
these real numbers can usually be assumed to be valid for the original attractor when computed
from any reconstructed attractor. Conversely, they cannot be used to distinguish one embedding
from another. Nor do these real numbers shed any light on the mechanism generating chaotic
behavior [16].

Topological indices shed a great deal of light on the mechanism generating chaotic
behavior [6, 7, 17]. At the same time they are not embedding invariants. As a result, we must
understand what part of the topological information obtained from a reconstructed attractor is
independent of the embedding, and what part is not. This program has been completed for
three-dimensional attractors that are contained in a bounding torus of genus one [16]. In this
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case, we find that embeddings have three degrees of freedom: parity, global torsion and knot
type.

In the present work, we extend these results to three-dimensional attractors of higher
genus (g > 1). These include many attractors generated by autonomous dynamical systems
with two-fold or higher-fold symmetry [7, 18–20]. We find the analogs of parity and global
torsion, but do not discuss knot type. All embeddings reveal the same stretching and folding
mechanism.

Our work is restricted to three-dimensional attractors. These are attractors that exist in
a three-dimensional manifold, not necessarily R

3. This restriction is necessary because the
topological indices that we compute (linking numbers, relative rotation rates) are for closed
periodic orbits that have a rigid organization in three-dimensional manifolds but not in higher
dimensional manifolds [10, 17].

In section 2, we briefly review the results for the genus-one case. In section 3, we construct
the analog, in the higher-genus case, for global torsion in the genus-one case. In section 4, we
construct the analog, in the higher-genus case, of parity in the genus-one case. We discuss the
implications of our results in section 5.

2. Review of genus-one results

In [16] we assumed that an experimental attractor is contained in a three-dimensional manifold
that has the global topology of a genus-one torus. An embedding constructs a diffeomorphism
between the original and reconstructed attractors. A different embedding provides another
diffeomorphism between the original and another reconstructed attractor. The two (in fact,
all) reconstructed attractors are diffeomorphic when restricted to the attracting set. The
question of how embeddings of an unseen attractor can differ simplifies to the question of how
diffeomorphisms of a torus to a torus can differ.

Diffeomorphisms form a group. The subset of diffeomorphisms that is isotopic to
the identity forms an invariant subgroup [10, 16]. In fact, this invariant subgroup cannot
change any topological indices, which are integers or rational fractions [6, 17]. The quotient
group, diffeomorphisms/(diffeomorphisms isotopic to identity), is discrete and describes the
equivalence classes of diffeomorphisms of the torus [10, 16]. Each element in this discrete
group changes the topological indices in a different way.

The action of this discrete group can be understood by its action on the boundary of the
torus [10, 16]. This is done as follows. Cut the torus open and stretch it out along the central
axis. Label the position along the axis by an angle φ, 0 � φ � 2π . Choose a plane at φ and
rotate the intersection of the torus boundary with this plane by an angle θ . Set θ(φ = 0) = 0.
Now close the torus backup. A diffeomorphism is created by this process only when periodic
boundary conditions are satisfied, so that θ(φ = 2π) = 2πn, with n an integer [21]. This
integer is the degree of freedom called global torsion [6, 16, 22].

A parity transformation is obtained by reflecting the torus in an external mirror. Parity is
a single index: P = ±1.

A genus-one torus can be embedded into R
3 by allowing its central axis to follow the

curve of any knot. We do not yet know how to classify knots algebraically. Even less is
known about extrinsic embeddings of higher-genus tori in R

3. We do not discuss extrinsic
embeddings of genus-g tori (g > 1) into R

3 in the present work.

3. Analog of global torsion

A bounding torus of genus g [23, 24] can be constructed, Lego© fashion, from Y-junctions.
These are two-dimensional manifolds with three ports. For our purposes there are two types:
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Figure 2. Bounding tori can be constructed from two types of units with three ports. (a) Splitting
units have one input port and two output ports; (b) joining units have two input ports and one
output port.

splitting units with one input port and two output ports and joining units with two input ports
and one output port. These units are shown in figures 2(a) and (b). A canonical bounding
torus of genus three is shown in figure 3. The Lorenz attractor is contained in a bounding torus
of this type. The figure shows how this bounding torus is decomposed into two input units
and two output units. As usual, output ports connect to input ports, and there are no free ends
[4–6, 17].

In figure 3(b), we insert a ‘flow tube’ between each output port and the input port on a
different unit that it is connected to. Periodic boundary conditions are satisfied if each of these
tubes is rotated through an integer number of full twists [16, 21]. Since there are 4 = 2(3 − 1)

units in the decomposition of the genus-three torus, each has three ports, and one tube is
inserted between each pair of ports, there is a total of (3 − 1) × 3 tubes, each of which can
exhibit an integer twist. Each configuration is diffeomorphic but not isotopic to every other.

The general result is that a genus-g torus can be decomposed into g −1 splitting units and
g − 1 joining units, so that 2(g − 1) × (3/2) = 3(g − 1) tubes can be inserted. As a result,
the genus-g analog of the genus-one global torsion is an index ZN,N = 3(g − 1). This is a
set of N = 3(g − 1) integers, one for each inserted flow tube. Recall that for bounding tori,
g = 1 or g � 3 [23, 24].

4. Local reflections

The genus-g analog of the parity transformation in the genus-one case consists of local
reflections.

The construction of local reflections is subtle. It is clear what a local reflection does to a
branched manifold that describes a genus-g flow. It simply maps a joining unit of a branched
manifold into its mirror image. This is illustrated in figure 1. The problem is that local
reflections in R

3 cannot be used in general to create diffeomorphisms between the two flows
responsible for the branched manifolds related by a local reflection, as shown in figure 1. The
exception occurs when a symmetry is involved [7].
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Figure 3. (a) A genus-three bounding torus is decomposed into two splitting units and two joining
units. (b) Each input/output port pair is separated by a cylindrical flow tube. Periodic boundary
conditions are satisfied if each flow tube is given an integer twist. There are six flow tubes, so the
analog of global torsion in the genus-three case is Z6. In the genus-g case, the analog is Z3(g−1).
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Figure 4. Three flow tubes are attached to a joining unit. The flow in the joining unit undergoing
local reflection is immersed in R

4 according to (x, y, z) → (x, y, −z,w = 0). The flow in the flow
tubes is rotated in the (z, w) plane according to (z, w) → (z cos θ − w sin θ, z sin θ + w cos θ),
where θ = 0 at the entrance of each added flow tube and θ = π at the exit. This creates
a diffeomorphism between the original flow in R

3 ⊂ R
4 and a nonisotopic flow in a three-

dimensional manifold M3 ⊂ R
4.

We can create diffeomorphisms that include local reflections as shown in figure 4. Choose
a joining unit and insert a flow tube of length L at each port. Each flow tube contains a branch
of the branched mainfold describing the attractor generated by the flow. Deform the flow so
that it is ‘laminar’ or ‘uniform’ in each flow tube. By ‘laminar’ or ‘uniform’, we mean the
flow assumes the form ẋ = const, ẏ = 0, ż = 0 in local coordinates. Here, x is a coordinate
along the central axis of the cylindrical flow tube, y is a coordinate in the plane of the branch
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through the flow tube and z measures the distance above or below this plane. The branch
occurs in the plane z = 0.

Now embed the three-dimensional flow into R
4 by introducing a fourth coordinate, w. The

original three-dimensional flow has coordinates (x(t), y(t), z(t), w) with w = 0. Now create
a diffeomorphism between this flow in a three-dimensional manifold in R

4, R
3 ⊂ R

4, and
another three-dimensional manifold in R

4,M3 ⊂ R
4, as follows. Perform a rotation through

π radians in the z,w plane in each flow tube according to (z, 0) → (z cos(x/L), z sin(x/L)).
This rotation maps coordinate (y, z) at the input side of a flow tube (x = 0) to coordinate
(y,−z) at the output side (x = L). In the joining unit, map coordinates (x, y, z) to their mirror
images (x, y,−z) in the z = 0 plane. This set of transformations creates a diffeomorphism
between flows in R

3 and M3. The projection of the branched manifold describing the flow in
M3 into R

3 differs from the branched manifold describing the flow in R
3 by the mirror image of

the joining unit, as shown in figure 1. The two branched manifolds are 1-1, locally isomorphic,
and not isotopic (i.e., globally distinct). The flows in R

3 and M3 are diffeomorphic but the
projection of the flow in M3 ⊂ R

4 into R
3 is not an embedding. This phenomenon has already

been encountered in descriptions of autonomous-coupled dynamo systems [25].
Local reflections can be carried out independently on each of the g − 1 joining units. The

effect of a local reflection can be seen by comparing the two representations of the Lorenz
flow shown in figure 1. A local reflection has been carried out on a joining unit in figure 1(b).
This operation transforms a rotation-symmetric representation of the attractor (figure 1(a))
to an inversion-symmetric representation of the attractor (figure 1(b)). We can describe the
two representations shown in figure 1 as (+, +) and (−, +), with the positions referring to the
joining units on the left and right, and the signs referring to a reflection (−) or no reflection
(+). Two other representations are easily constructed with signatures (−,−) and (+,−). The
latter two are related to the former two by a global reflection transformation.

A strange attractor in a genus-g torus has 2(g−1) representations related by local reflections.
They are all related to each other by diffeomorphisms acting in R

4. None is isotopic to any
other.

5. Summary

Embeddings based on scalar or vector time series create diffeomorphisms between the
original attractor and the reconstructed attractor. Different embeddings create diffeomorphic
reconstructed attractors that are not necessarily topologically equivalent, that is, not isotopic.
Since topology indicates clearly what are the mechanisms (stretching, folding, tearing,
squeezing) that generate complex behavior [17], it is an important question to ask: How
much do we learn about the original attractor by carrying out a topological analysis of a
reconstructed attractor, and how much about the embedding do we learn? For the genus-one
case, the result is that embeddings can differ by three degrees of freedom: parity, global torsion
and knot type. The mechanism displayed is independent of the embedding [16].

In this work, we have answered this question for attractors contained in higher-genus
bounding tori. We have done this by constructing a discrete classification of all nonisotopic
(topologically inequivalent) diffeomorphisms of a bounding torus into itself. We have
enumerated the degrees of freedom, not including how the bounding torus can be embedded
into R

3. There are two degrees of freedom: local torsion in each of 3(g − 1) flow tubes and
local reflections in each of g − 1 joining units. It is useful to regard these degrees of freedom
as follows: there are 2(g−1) topologically inequivalent representations of an attractor related
to each other by different subsets of local reflection transformations. Each is the patriarch
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for a 3(g − 1)-parameter family of strange attractors defined by an index Z3(g−1) [21]. All
representations are topologically inequivalent.

What is an invariant of an embedding, and the same for each of the 2(g−1) ⊗ Z3(g−1)

representatives of a strange attractor is the mechanism that generates the dynamics. The
mechanism describes how the flow is split apart to flow to different regions of the phase space,
and how different parts of the phase space are joined [6, 16]. This information is encoded in
the transition matrix: stretching is described by the rows of this matrix and squeezing by the
columns of this matrix [23, 24].
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